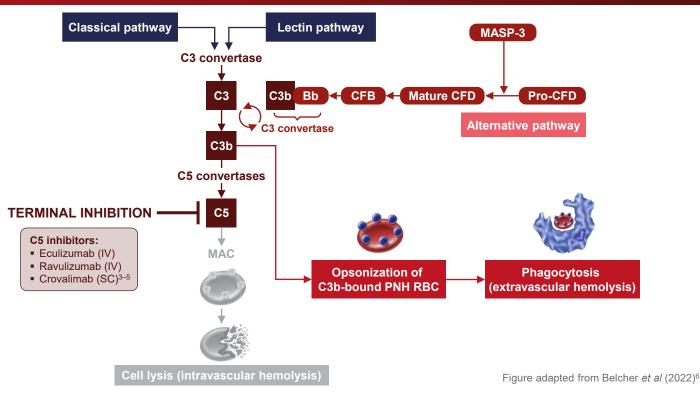
OMS906, a Novel Alternative Pathway MASP-3 Inhibitor, Normalizes Hemoglobin Levels and Increases Clone Size in Treatment-Naïve PNH Patients

Oksana Karnabeda, MD^{1,2}; Valentyn Moskalenko, MD, PhD³; Zoreslava Lysak, MD³; Narinder Nangia, PhD⁴; J. Steve Whitaker, MD⁴; Eleni Gavriilaki, MD, PhD⁵, **Jens Panse, MD**^{6,7}

¹Medical Centre of ARENSIA Exploratory Medicine LLC, Kyiv, Ukraine; ²Bogomolets National Medical University, Kyiv, Ukraine; ³Medical Centre of ARENSIA Exploratory Medicine LLC, Kyiv, Ukraine; ⁴Omeros Corporation, Seattle, Washington, USA; ⁵G Papanikolaou Hospital, Thessaloniki, Greece; ⁶Universitätsklinikum RWTH Aachen, Germany; ⁷Center of Integrated Oncology (CIO) Aachen, Bonn, Cologne, Düsseldorf (ABCD), Germany

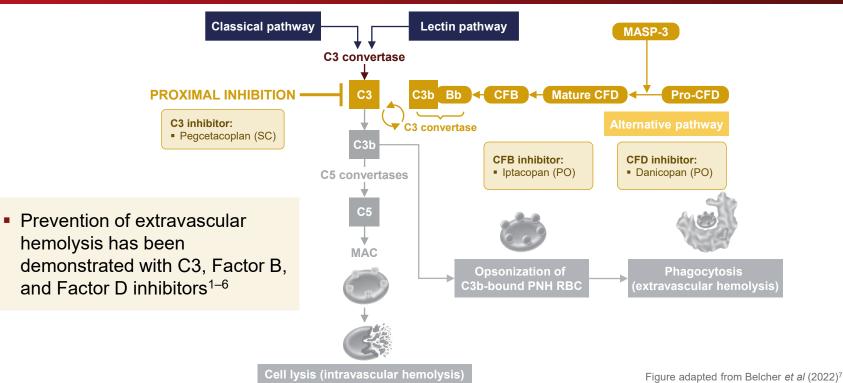
Presented at the 65th ASH Annual Meeting and Exposition | December 9–12, 2023 | San Diego, USA


Clinical Presentation of PNH is Driven by Intravascular Hemolysis due to Dysregulation of the Complement System

CFB, complement Factor B; CFD, complement Factor D; MAC, membrane attack complex; MASP-3, mannan-binding lectin-associated serine protease-3; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood cell.

Risitano AM et al. Front Immunol 2019;10:1157.
Notaro R et al. N Engl J Med 2022;387:160–6.
Risitano AM et al. Immunol Rev 2023;313:262–78.
Loschi M et al. Am J Hematol 2016;91:366–70.
Fattizzo B et al. J Blood Med 2022;13:327–35.
Belcher JD et al. Transl Res 2022;249:1–12.

Terminal Complement Inhibition in PNH Inhibits Intravascular Hemolysis but Inevitably Leads to Extravascular Hemolysis^{1,2}

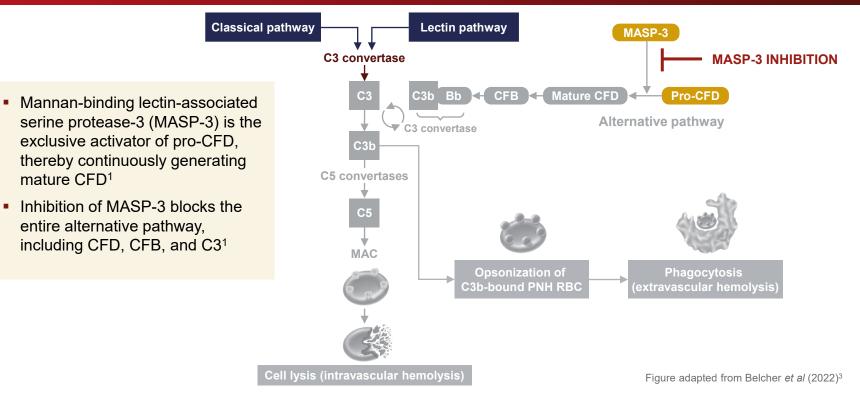


CFB, complement Factor B; CFD, complement Factor D; IV, intravenous; MAC, membrane attack complex; MASP-3, mannan-binding lectin-associated serine protease-3; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood cell; SC, subcutaneous.

1. Notaro R et al. N Engl J Med 2022;387:160–6. 2. Risitano AM et al. Immunol Rev 2023;313:262–78. 3. Röth A et al. HemaSphere 2023;7(S3):S181.

4. Kulasekararaj A et al. HemaSphere 2023;7(S3):S183. 5. Chang A et al. HemaSphere 2023;7(S3):P785. 6. Belcher JD et al. Transl Res 2022;249:1–12.

Proximal Inhibition of the Alternative Pathway Blocks Intravascular Hemolysis and Prevents Extravascular Hemolysis^{1,2}

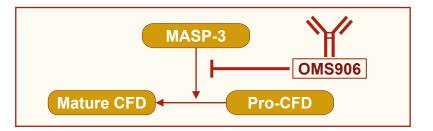


CFB, complement Factor B; CFD, complement Factor D; MAC, membrane attack complex; MASP-3, mannan-binding lectin-associated serine protease-3; PNH, paroxysmal nocturnal hemoglobinuria; PO, orally; RBC, red blood cell; SC, subcutaneous. **1.** Notaro R *et al. N Engl J Med* 2022;387:160–6. **2.** Risitano *AM et al. Immunol Rev* 2023;313:262–78. **3.** Peffault de Latour P *et al. Blood* 2022;140(S2):LBA-2.

4. Risitano AM et al. 49th Annual Meeting of the EBMT 2023; April 23–26, 2023; Paris: OS12-06. 5. Risitano AM et al. HemaSphere 2023;7(S3):S182.

6. Peffault de Latour P et al. HemaSphere 2023;7(S3):P774. 7. Belcher JD et al. Transl Res 2022;249:1–12.

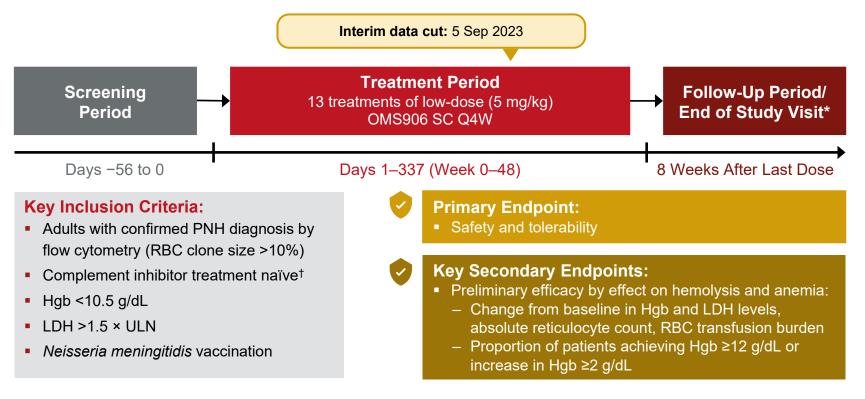
MASP-3 is a Key Activator of the Alternative Pathway and a **Novel Target for Treatment of PNH^{1,2}**


CFB, complement Factor B; CFD, complement Factor D; MAC, membrane attack complex; MASP-3, mannan-binding lectin-associated serine protease-3; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood cell.

1. Sekine H et al. Immunol Rev 2023:313:15–24. 2. Barratt J. Weitz I. Front Immunol 2021:12:712572. 3. Belcher JD et al. Transl Res 2022:249:1–12.

mature CFD¹

OMS906 Selectively Targets MASP-3


- OMS906 is a highly selective humanized IgG4 mAb that binds to and inhibits MASP-3^{1,2}
- It can be administered SC or IV:2
 - T_{1/2} (geometric mean): 239–406 h (SC)
 - T_{1/2} (geometric mean): 94–399 h (IV)
- In a Phase 1 study in healthy subjects, OMS906 was well tolerated, with 5 mg/kg SC providing substantial MASP-3 inhibition through Day 42²

CFD, complement Factor D; IgG, immunoglobulin G; IV, intravenous; mAb, monoclonal antibody; MASP-3, mannan-binding lectin-associated serine protease 3; SC, subcutaneous; T_{1/2}, terminal elimination half-life.

1. Cummings WJ et al. Mol Immunol 2022;150:145. 2. Griffin M et al. HemaSphere 2023;7(S3):P787.

Study Design for the Treatment-Naïve Cohort in an Ongoing Phase 1b Trial of OMS906 (NCT05889299; EudraCT 2022-002450-22)

*If patient discontinues from study for any reason; †Patients treated with any complement pathway inhibitor within 6 months prior to screening were excluded. Hgb, hemoglobin; LDH, lactate dehydrogenase; PNH, paroxysmal nocturnal hemoglobinuria; Q4W, every 4 weeks; RBC, red blood cell; SC, subcutaneous; ULN, upper limit of normal.

Patient Treatment Status

- This study enrolled 11 patients between 20 December 2022 and 1 May 2023
 - Interim analysis data cut: 5 September 2023
- All 11 patients have received OMS906 (5 mg/kg SC, "low dose")

No. of Patients	Doses Received	
11	≥4	
7	≥6	

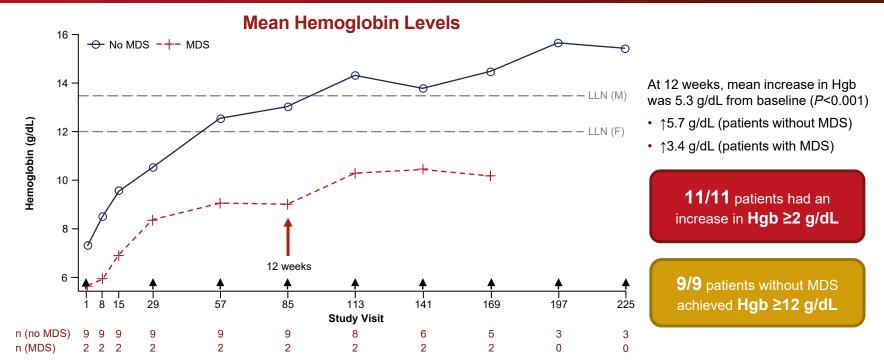
 This study provided treatment access for patients with PNH who had no other options available

The Majority of Patients Received RBC Transfusions in the 12 Months Prior to OMS906 Treatment

	OMS906 5 mg/kg SC N=11		
Baseline demographics	Mean (SD)	Median (range)	Medical history, n (%)
Age, years	41.0 (15.6)	37 (27–72)	Iron deficiency
Weight, kg	72.4 (13.3)	66.5 (56–95)	Chronic kidney disease
Female, n (%)	6 (55)		MDS
Caucasian, n (%)	11 (100)		Aplastic anemia
PNH disease characteristics	Mean (SD)	Median (range)	Folate deficiency
PNH clone size, %	93 (0.13)	97 (55–99)	B12 deficiency
Patients receiving RBC transfusions,* n (%)	7 (64)		Concomitant medications, n (%)
Patients receiving steroids for			Rivaroxaban
PNH, n (%)	6 (55)		Ursodiol
Laboratory marker at baseline	Mean (SD)	Median (range)	Enoxaparin
Hgb, g/dL	7.0 (2.2)	6.4 (3.9–10.4)	Iron
LDH, U/L	1835 (749)	1831 (905–3480)	Folate
Absolute reticulocytes, ×10 ⁹ /L	183 (71)	162 (107–307)	Vitamin B12

Data shown are from interim data cut as of 5 September 2023. *In the 12 months prior to OMS906 treatment.

Hgb, hemoglobin; LDH, lactate dehydrogenase; MDS, myelodysplastic syndrome; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood cell; SC, subcutaneous; SD, standard deviation.

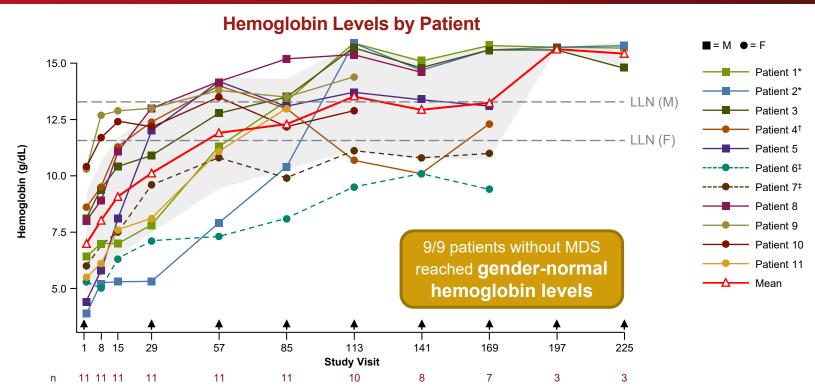

Adverse Events in ≥20% of Patients	n (%)	CTCAE Grade
Itching	3 (27)	All Grade 1
Increased thrombocytopenia	4 (36)	1 patient Grade 1* 2 patients Grade 2* 1 patient Grade 3 [†]
Transient neutropenia	3 (27)	3 patients Grade 3

- All patients with reported cytopenia had evidence of underlying bone marrow failure
- No clinical breakthrough hemolysis

- No MAVEs
- No treatment-related SAEs, discontinuations, or deaths

Data shown are from interim data cut as of 5 September 2023. *Received iron therapy; [†]Had pre-existing Grade 3 thrombocytopenia and myelodysplastic syndrome. CTCAE, Common Terminology Criteria for Adverse Events; MAVE, major adverse vascular event; PNH, paroxysmal nocturnal hemoglobinuria; SAE, serious adverse event.

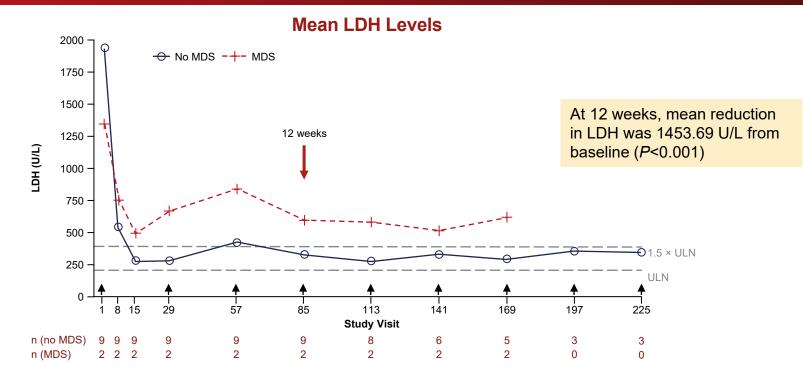
Treatment with Low-Dose OMS906 Rapidly Improved Hemoglobin Levels



- Patients without MDS had more rapid improvement in hemoglobin levels after treatment with low-dose OMS906
- No patients required transfusions following initiation of OMS906 treatment

Data shown are from interim data cut as of 5 September 2023. P values are for testing change from baseline using t-test; P values may not be valid for small N. Black arrows indicate OMS906 administration following laboratory marker collection.

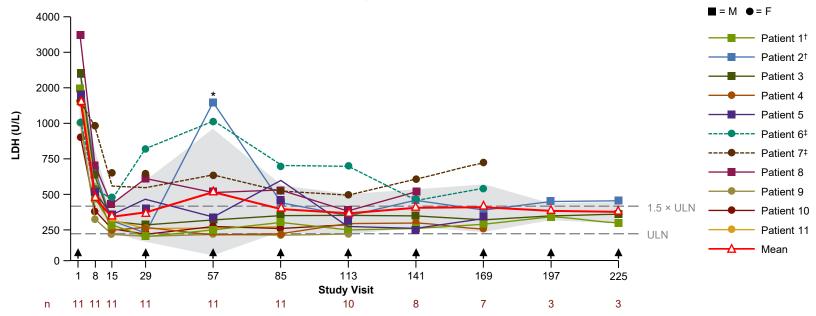
F. female: Hgb. hemoglobin: LLN. lower limit of normal: M. male: MDS. mvelodvsplastic syndrome.


Treatment with Low-Dose OMS906 Rapidly Improved Hemoglobin Levels

No patients required transfusions following initiation of OMS906 treatment

Data shown are from interim data cut as of 5 September 2023. Black arrows indicate OMS906 administration following laboratory marker collection. Grey shading represents variance. *Patients 1 and 2 have aplastic anemia; †Patient 4 had hip arthroplasty of right hip at Day100; ‡Patients 6 and 7 have MDS; F, female; LLN, lower limit of normal; M, male; MDS, myelodysplastic syndrome.

Treatment with Low-Dose OMS906 Reduced LDH Levels

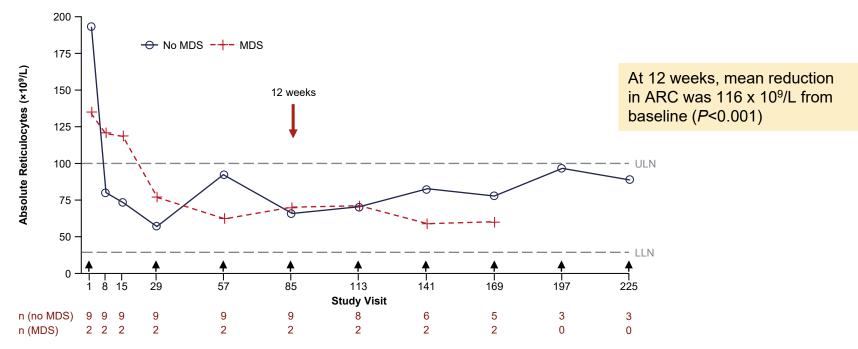


PK and PD from these patients will help inform planned dose escalation to achieve once-quarterly dosing

Data shown are from interim data cut as of 5 September 2023. *P* values are for testing change from baseline using t-test; *P* values may not be valid for small N. Black arrows indicate OMS906 administration following laboratory marker collection. LDH, lactate dehydrogenase; MDS, myelodysplastic syndrome; PD, pharmacodynamics; PK, pharmacokinetics; ULN, upper limit of normal.

Treatment with Low-Dose OMS906 Reduced LDH Levels

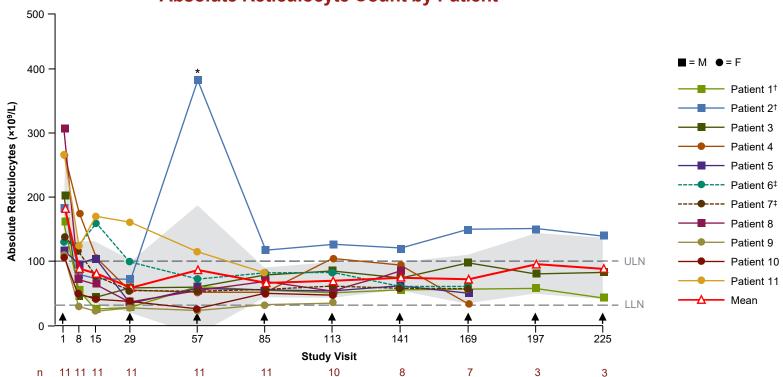
LDH Levels by Patient



- Three patients had increases in LDH suggesting initiation of hemolysis at the end of a dosing period, although hemoglobin was not reduced in any of these patients
- PK and PD from these patients will help inform planned dose escalation to achieve once-quarterly dosing

Data shown are from interim data cut as of 5 September 2023. Black arrows indicate OMS906 administration following laboratory marker collection. Grey shading represents variance. *Patient 2 had mild COVID-19 infection prior to Day 57 visit; [†]Patients 1 and 2 have aplastic anemia; [‡]Patients 6 and 7 have MDS. F, female; LDH, lactate dehydrogenase; M, male; MDS, myelodysplastic syndrome; PD, pharmacodynamic; PK, pharmacokinetic; ULN, upper limit of normal.

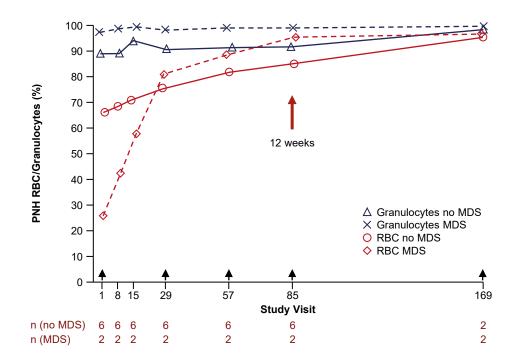
Absolute Reticulocyte Count Decreased Overall with OMS906 Treatment


Mean Absolute Reticulocyte Count

Mean absolute reticulocyte counts were reduced from baseline by 92–122 × 10⁹/L at all timepoints

Data shown are from interim data cut as of 5 September 2023. *P* values are for testing change from baseline using t-test; *P* values may not be valid for small N. Black arrows indicate OMS906 administration following laboratory marker collection. ARC, absolute reticulocyte count; LLN, lower limit of normal; MDS, myelodysplastic syndrome; ULN, upper limit of normal.

Absolute Reticulocyte Count Decreased Overall with OMS906 Treatment



Absolute Reticulocyte Count by Patient

Data shown are from interim data cut as of 5 September 2023. Black arrows indicate OMS906 administration following laboratory marker collection. Grey shading represents variance. *Patient 2 had mild COVID-19 infection prior to Day 57 visit; †Patients 1 and 2 have aplastic anemia; ‡Patients 6 and 7 have MDS; F, female; LLN, lower limit of normal; M, male; ULN, upper limit of normal.

PNH RBC Clone Size Increased Over Time with OMS906 Treatment, Indicating Protection of the RBCs

Mean PNH RBC and Granulocyte Clone Size

- At week 12, PNH RBC clone size increased to a mean of 87.6% (range 67.4–96.4%) from a mean baseline level of 56.1% (*P* = 0.011)
- Increase was greater in the two patients with MDS

PNH RBC Clone Size

MDS	Baseline	Day 29 (change from baseline)	Day 85 (change from baseline)
No	66.2%	75.8%	85.0%
(n=6)		(+9.6%)	(+18.8%)
Yes	25.9%	80.9%	95.4%
(n=2)		(+55%)	(+69.5%)

Data shown are from interim data cut as of 5 September 2023. *P* values are for testing change from baseline using t-test; *P* values may not be valid for small N. Black arrows indicate OMS906 administration following laboratory marker collection. MDS, myelodysplastic syndrome; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood cell.

Conclusions

- MASP-3 is an activator of the alternative pathway and a novel target for PNH treatment
- OMS906, a MASP-3 inhibitor, showed promising efficacy in this interim analysis:
 - Normalization of Hgb (9/11 patients) was achieved with monthly SC dosing without clinical breakthrough hemolysis
 - Normalization of LDH (8/11 patients <1.5 × ULN), ARC (10/11 patients), and transfusion independence (11/11 patients) were achieved
 - Patients with MDS demonstrated notable response to OMS906, though to a lesser extent than patients without MDS
- OMS906 continues to be well tolerated with no safety signals of concern

- OMS906 dose escalation guided by the PK/PD of patients with subclinical hemolysis is underway to inform achievement of quarterly dosing
- Further evaluation of OMS906 for PNH will explore GPI-deficient patients who have a suboptimal response to C5 inhibitors or are complement inhibitor treatment naïve
- A C5-switchover PNH trial is fully enrolled in sites in UK, Germany, and Switzerland; additional alternative pathway-mediated indications are being evaluated